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1 Introduction

Some problems for which trivial sequential algorithms exist appear to be much harder to

solve in a parallel framework. When converting a sequential algorithm to a parallel one,

at each step of the parallel algorithm we have to choose a set of operations which may

be executed in parallel. Often, we have to choose these operations from a large set of

symmetrical operations, where interdependencies prevent simultaneous execution of all the

operations in the set. Symmetry-breaking techniques enable the algorithm to select a large

subset of independent operations.

F4iV&* Imaximal independent set (MIS) of a graph is a good example of the necessity
ow % r A. ,.

.. Qt:.y. aetry-breaking. At any step, a parallel MIS algorithm might have many candidate

nodes to add to the independent set. However, due to adjacency constraints, not all of these

ei odes can be added simultaneously. A symmetry-breaking technique is therefore needed to

fiad a large set of nodes to add, as has been done in previous parallel MIS algorithms [GS87,

KW85, Lub86].

Previous symmetry-breaking techniques have focused on randomization. It is often de-

sirable; however, to have a deterministic algorithm. Karp and Wigderson [KW85], and Luby

[Lub86] proposed methods to convert certain randomized algorithms into deterministic ones.

Their methods, however, significantly increase the number of processors used.

In many cases it is sufficient to break symmetry in sparse graphs. In this paper we

introduce deterministic symmetry-breaking techniques for sparse graphs that use a linear '-

number of processors. Our primary technique allows us to 3-color a rooted tree in O(lg'n)

time on a CREW PRAM. This technique was motivated by the deterministic coin-flipping

technique developed by Cole and Vishkin [CV86].

We use our techniques to develop the linear-processor algorithms listed below.

* For graphs whose maximum degree is A, we give ati O((lg N\ )(A + lg'n))-time ERE\V

PRAM algorithm for (A+ 1)-coloring and for finding a maximal independent set.

" For planar graphs, we givu 7-coloring, MIS, and maximal matching algorithms that

run in O(Ign) time on a CRCW PRAM and in O(lg2 n) time on an EREW PI1AM.

2



* We give an O(lgnlg*n)-time CRCW PRAM algorithm for 5-coloring an embedded

planar graph.

The above results improve the running time and processor bounds for the respective S

problems. The best deterministic linear-processor algorithm for finding MIS [GS87] runs in

O(lg4 n) time on constant-degree graphs, compared to O(lg*n) time of our algorithm. The

5-coloring algorithms for planar graphs described in [BK87, Nao86] use O(1g 3 n) time and

the same (large) number of processors as needed by Luby's MIS subroutine [Lub86]. The

O(lg3 n) running time of the maximal matching algorithm due to Israeli and Shiloach [IS86]

can be reduced to O(lg 2 n) in the restricted case of planar graphs, but our algorithm is faster.

Although in this paper we have limited ourselves to the application of our techniques for

the design of parallel algorithms for the PRAM model of computation, the same techniques

can be applied in a distributed model of computation [Awe85, GHS83]. Moreover, the

f2(lg*n) lower bound for the MIS problem on a chain in the distributed model implies that

our symmetry-breaking technique is optimal in this model [Awe87, Lin87].

Since we can 3-color a rooted tree in O(lg*n) time, it is natural to ask if a rooted tree can

be 2-colored as quickly. We answer this question by giving an O(lgn/Iglg n) lower bound

for 2-coloring of a rooted tree. We also present an l(lg n/ lglg n) lower bound for finding

a maximal independent set in a general graph, thus answering the question posed by Luby

[Lub861.

This paper is organized as follows. In Section 2 we present definitions, notation, and

computation model details. In Section 3 we present the algorithm for 3-coloring rooted

trees. In Secticr, 4 we use this algorithm to (A + 1)-color constant-degree graphs. In Section

5 we use results of Section 4 to develop algorithms for planar graphs. In Section 6 we prove

the lower bounds mentioned earlier.

3
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2 Preliminaries

This section describes the assumptions about the computational model and introduces the

notation used throughout the paper. We consider simple, undirected graphs with n vertices

and m edges. The maximum degree of a graph is denoted by A. The graph induced by

set of nodes X is denoted by G[X].

Given a graph G = (V, E), we say that a subset of nodes I C V is independent if no two

nodes in I are adjacent. A coloring of a graph G is an assignment C : V -- I+ U {0} of

nonnegative (not necesseraly consequitive) integers (colors) to nodes of the graph. A coloring .

is valid if no two adjacent nodes have the same color. The bits are numbered from 0, and the

ith bit in the color of a node v is denoted by C,(i). A subset of edges M C E is a matching

if each pair of distinct edges in M have no nodes in common.

The following problems are discussed in the paper:

" The node-coloring problem: find a valid coloring of a given graph that uses at most

A+ 1 colors.

" The maximal independent set (MIS) problem: find a maximal independent set of 6r

vertices in a given graph.

• The maximal matching (MM) problem: find a maximal matching in a given graph.

We make a distinction between unrooted and rooted trees. In a rooted tree, each nonroot

node knows which of its neighbors is its parent.

The following notation is used:

lgx = 1og 2 x

lg( ) x = lgx

lg (
_
x  = lglg( i - ) x

lg*x = min{ilg(0 x < 2}

We assume a PRAM model of computation [131185, FW78] where each processor is capable

of executing simple word and bit operations. The word width is assumed to be O(lg n). The

4
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Procedure 6-Color-Rooted-Tree(T)

for all v E V in parallel do C, - PE-ID(v);
while N, > 6 do

for all v E V in parallel do begin
if v is the root then begin
i - 0;

end;
else begin
i, 4 min{i CV(i) $ Cparent(v)(i)};

end;
C,,-

end;
N0 4-- max{C, I v E V} + 1;

end;
end.

Figure 1: The Coloring Algorithm for Rooted Trees

word operations we use include bit-wise boolean operations, integer comparisons, and unary-
to-binary conversion. Each processor P has a unique identification number O(lg n) bits wide,

which we denote by PE-ID(P). We use adjacency lists to represent the graph, assigning
a processor to each edge and each node of the graph. We use exclusive-read exclusive-
write (EREW) PRAM. concurrent-read exclusive-write (CREW) PRAM, and concurrent-

read concurrent-write (CRCW) PRAM, as appropriate. The write conflicts in CRCW PRAM

are assumed to be resolved arbitrarily. All lower bounds are proven for a CRCW PRAM
with a polynomial number of processors.

3 Coloring Rooted Trees

This section describes an O(lg*n)-time algorithm for 3-coloriig rooted trees. \'\e first describe

ai O(lg*.n)-ti ic algorithmiui for 6-colorin g rooted trees and twni show how to traiisformi a 6- i

coloring of a roote(d tree into a 3-coloring in (onstant timn.

5
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The procedure 6-Color-Rooted-Trec is shown in Figure 1. This procedure accepts a rooted

tree T = (V, E) and 6-colors it in time O(lg*n). Starting from the valid coloring given by the

processor ID's, the procedure iteratively reduces the number of bits in the color descriptions

by recoloring each nonroot node v with the color obtained by concatenating the index of a

bit in which C, differs from Cparent(v) and the value of this bit. The root r concatenates 0

and C,[0] to form its new color.

Theorem 1 The algorithm 6-Color-Rooted-Tree produces a valid 6-coloring of a tree in

O(lg*n) time on a CREW PRAM using a linear number of processors.

Proof: First we prove by induction that the coloring computed by the algorithm is valid,

and then we prove the upper bound on the execution time.

Assuming that the coloring C is valid at the beginning of an iteration, show that the

coloring at the end of the iteration is also valid. Let v and w be two adjacent nodes with

v being the parent of w. In the algorithm, w chooses some index i such that C,((i) C,(i)

and v chooses some index j such that C,(j) $ Cpaeni(,,)(J). The new color of w is (i, Cw(i))

and the new color of v is (j, C,(j)). If i # j, the new colors are different and we are done.

On the other hand, if i = j, then C,(i) can not be equal to C (i) by the definition of i, and

again the colors are different. Hence, the validity of the coloring is preserved.

Now we show that the algorithm terminates after O(lg*n) iterations. Let Lk denote the

number of bits in the representation of colors after k iterations. For k = 1 we have

L, = [lgL] +1

< 2[lg L

if [lgL] > 1.

Assume for some k we have Lk- < 2 [lg(k- ' ) Li and [lg(k) L] > 2. Then

Lk = [lg Lk_] I 1

< [lg(2 lg(ki) L)] + 1
< 2 [1g(k) L]

Therefore, as long as Jig(k) Li > 2,

Lk < 2[lg(k) L.

6
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Hence, the number of bits in the representation of colors Lk decreases until, after O(lg'n)

iterations, [lg(k) L] becomes 1 and Lk reaches the value of 3 (the solution of L =[Ig LI + 1).

Another iteration of the algorithm produces a 6-coloring: 3 possible values of the index i,

and 2 possible values of the bit b,. The algorithm terminates at this point.

Using concurrent-read, each node determines its parent's color in constant time. Given

two colors, C,. and C,, we can compute the smallest index j such that the j-th bit of C, differs

from the j-th bit of C,, by computing j = unary-to-binary([C, - C[ XOR (IC, - C," - 1)).

Hence, each node can compute the new color independently in constant time. Therefore,

each iteration takes constant time and the algorithm uses O(lg*n) time overall. Note that

no concurrent-write capabilities are required; for constant-degree trees the concurrent-read

capability is not needed either. ]

We now describe the algorithm 3-Color-Rooted-Tree which 3-colors a rooted tree. The

algorithm first applies 6-Color-Rooted-Tree to produce a valid 6-coloring of the tree. Then

it executes three stages, each time reducing the number of colors by one.

Each stage works as follows. By shifting down the coloring we mean recoloring each

nonroot node with the color of its parent and recoloring the root with a color different from

its current color. To remove the color c E {3,4,5}, first shift down the current coloring.

Then, recolor each node of color c with the smallest color different from its parent's and

children's colors.

Theorem 2 Given a rooted tree T, the algorithm 3-Color-Rooted-Tree constructs a valid

3-coloring of T using n processors and O(lg*n) time on a CREW PRAM.

Proof: After a shift of colors, the children of any node have the same color. Thus each node

is adjacent to nodes of at most two different colors. Therefore, each stage of the algorithm

reduces the number of colors by one, as long as the number of colors is greater than three.

Each stage takes a constant time on a CREW PRAM. The theorem follows from Theorem1. I ~I

To describe the subsequent algorithms, we introduce the concept of a pseudoforest [PQ82].

A pscudoforest of G = (V, E) is a. directed graph (' = (V, E'), such that. (u, ,) C E'

7
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{u, v} E E and outdegree of any node is at most one. A maximal pseudoforest of G = (1/, E)

is a directed graph G' = (VE'), such that (u,v) E E' = {u,v} E E and outdegree of any

node in G' is one, unless this node is zero-degree in G. Nodes with zero out-degree are

roots of the pseudoforest. We assume that graphs are represented by adjacency lists, and

therefore a maximal pseudoforest can be constructed in (parallel) constant time by choosing

an arbitrary adjacent edge for every node and directing this edge outward.

The coloring algorithms presented in this section work for pseudoforests as well as for

rooted trees. Therefore, a pseudoforest can be 3-colored in O(lg*n) time on an CRCW PRAM

using a linear number of processors. We shall call the procedure for 3-coloring pseudoforests

3-Color-Pseudoforest. Note that an odd cycle is a pseudoforest that can not be colored in less

than 3 colors, and therefore the number of colors used by the procedure 3-Color-Pseudoforest

is optimal in this case.

Any tree can be 2-colored. In fact, it is easy to 2-color a tree in polylogarithmic time.

For example, one can use treefix operations [LM86, MR85] to compute the distance from

each node to the root, and color even level nodes with one color and odd level nodes with

the other color. It is harder to find a 2-coloring of a rooted tree in parallel, however, than it

is to find a 3-coloring of a rooted tree. In section 6 we show a lower bound of Ql(lg n/ lglg n)

on 2-coloring of a directed list on a CRCW PRAM with a polynomial number of processors,

which implies the same lower bound for rooted trees.

4 Coloring Constant-Degree Graphs

The method for coloring rooted trees, described in the previous section, is a generaliza-

tion of the deterministic coin-flipping technique described in [CVS6]. The method can be

generalized even further [GP87b] to color constant-degree graphs in a constant number of

colors. In the generalized algorithm, a current color of a node is replaced by a new color

obtained by looking at each neighbor, appending the index of a bit in which the current

color of the node is different from the neighbors' color to the value of the bit in the node

color, and concatenating the resulting strings. This algorithm runs in O(lg*n) time, but the

number of colors, although constant as a function of n, is exponential in the degree of the

8



Procedure Color- Constant-Degree- Graph.
E' - {(v,w) I {v, w} E E};
for i = 0 to A do begin ((the first phase))

for all v E V in parallel do
if 3(v, u) E E' then Ei - Ei + (v, u) ;

E 4--- E'- E(( Ej are edges of a maximal pseudoforest ))
end;
for all V E V in parallel do (( initial coloring))

c(v) +- 0;
for all 0 < i < A in parallel do (( color the pseudoforests))

Ci +- 3-Color-Pseudoforest(V, E);
for i +- A down to 0 do begin ((the second phase)) LU

El *"- E' + E;
for k- 1 to2,j *--OtoA do

V, +-- V; .

for all v E V' in parallel do
if C(v) = j and Ci(v) = k

then begin 6
C(v) ,- niax{{,1,...,A}- {C(w) I (, w) E E'}};
V' V' - {v};

end; W

end;
end;

end;
end.

Figure 2: The Coloring Algorithm for Constant Degree Graphs

graph.

In this section we show how to use the procedure 3-Color-Pseudoforest, described in the

previous section, to color a constant-degree graph with (A+ 1) colors.

The algorithm Color-Constant-Degree-Graph which colors a constant-degree graph G =

(V, E) with (A+1) colors is presented in Figure 2. The algorithm consists of two phases. In

the first phase we iteratively construct a maximal pseudoforost and remove its edges from

G. This phase continues until no edges remain, at which point we color all the nodes with

one color. Then we color all the pseudoforests with 3 colors in parallel.

In the second phase we iteratively return the edges of the current pseudoforest, each time ,, %
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recoloring the nodes to maintain a consistent coloring. At the beginning of each iteration of

this phase, the edges E' of the current pseudoforest are added, making the existing (A + 1)-

coloring inconsistent. The forest E' is already colored with 3 colors. Now, each node has

two colors - one from the coloring at the previous iteration and one from the coloring of the

forest. The pairs of colors form a valid 3(A+l)-coloring of the graph. The iteration finishes

by enumerating the color classes, recoloring each node of the current color with a color from

{0,..., A} that is different from the colors of its neighbors. We can recolor all the nodes of

the same color in parallel because they are independent.

Theorem 3 The algorithm Color-Constant-Degree-Graph colors the graph with (A+1) col-

ors and runs in O((lgA)(A' + lg*n)) time on an EREW PRAM using a linear number of
processors.

Proof: At each iteration all edges of the maximal pseudoforest are removed. The definition

of a maximal pseudoforest implies that each node that still has neighbors in the beginning

of an iteration has at least one edge removed during that iteration and therefore its degree

decreases. After at most A iterations, E' is empty. The running time of each iteration

is determined by the time required to select an unused edge out of an edge list. On an

EREW PRAM, an unused edge can be selected in O(lg A) time. The pseudoforests are

edge-disjoint and therefore can be colored in parallel. By Theorem 2, this takes O(lg A lg'n)

time on an EREW PRAM. The Ig A factor appears because we do not use the concurrent-

read capability; a node must broadcast its color to its children using, for example, recursive

doubling. The total time bound for the first stage is therefore O((lg A)(A + lg*n)).

The second phase terminates in at most A iterations as well. For each pseudoforest we

iterate over all the colors. Since in this section we assume that A is a constant, each iteration

can be done in O(lg A) time using word operations; for example, we can represent colors as bit

vectors and use exclusive-or funct;on together with the recursive doubling technique. Hence,

one iteration of the second phase takes O(A Ig A) time, leading to an overall O((lg A)(A2 +

lg'n)) running time for the second stage of the algorithm and for the algorithm itself. I

Given a (A + 1)-coloring of a graph, we can find an MIS of the graph by iterating

over the colors, taking all the remaining nodes of the current color, adding them to the

10
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independent set, and removing them and all their neighbors from the graph. (We refer to

this procedure as Constant-Degree-MIS in the subsequent sections.) The running time of this

algorithm is dominated by the running time of the Color-Constant-Degree-Graph procedure.

The following theorem states this fact formally.

Theorem 4 An MIS in constant-degree A graphs can be found in O((lgA)(A 2+lg'n)) time

on an EREW PRAM using a linear number of processors.

Remark: The proofs of Theorems 3 and 4 imply that the algorithms Color-Constant-Degree-

Graph and Constant-Degree-MIS have a polylogarithmic running times for graphs with poly-
logarithmic maximum degrees. For graphs with arbitrary maximum degree we can use the
following algorithm. First, the graph is partitioned into two subgraphs with approximately

equal number of nodes, and the subgraphs are recursively colored in A + 1 colors. Then we
iterate through all the colors of one of the subgraphs, recoloring each node with a color dif-

ferent from the colors of all of its neighbors. We can find this color using sorting in O(lg A)

time [Col86]. This algorithm colors a graph with a maximum degree of A with A+ 1 colors

in O(A lg A lg n) time.

The above algorithms can be implemented in the distributed model of computation
[Awe85, GHS83], where processors have fixed connections determined by the input graph.

The algorithms in the distributed model achieve the same O(lg*n) bound as in the EREW
PRAM model. It was recently shown that f2(lg*n) time is required in the distributed model

to find a maximal independent set on a chain [Awe87, Lin87]. Our algorithms are therefore

optimal (to within a constant factor) in the distributed model.

In [Sha86], flat forests are used to develop a linear processor constant-degree MIS algo-

rithm which used time exponential in A. A forest is flat if each of its trees, when properly
oriented, has a height of at most 1, and any zero-degree node in the forest is zero-degree in

the input graph. Using the techniques introduced in this section, we can find a flat forest of a
graph by proceeding as follows. Find a maximal pseudoforest P = G(V, E'). Note that there

exists a flat forest F = (V, E"), such that E" C E. Use the algorithm 3-Color-Pseudoforcst

to find a 3-coloring of the pseudoforest P and subsequently find an MIS I of' P. Each node

) f 1 adds an edge (v,u) to E" such that t E 1. Elach node in I with no adj;wrel edges11I
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in E", but some adjacent edges in E', chooses one adjacent edge in E' and adds it to E".

The graph F induced by the edges in E" is almost a flat forest - each tree has a height of at

most 2. Now we split trees of height 2 in F into trees of height one to produce a flat forest.

All operations take constant time except the operation of finding the 3-coloring of P, which

takes O(lg*n) time. Therefore, we can find a flat forest in O(lg*n) time on a CREW PRAM

using n processors.

5 Coloring and Matching in Planar Graphs

Euler's formula [Har72] implies that every planar graph has a constant fraction of nodes

of degree 6 or less. In this section we use this property in conjunction with the techniques

developed above to construct efficient algorithms for coloring and finding maximal matchings

in planar graphs.

First we present the algorithm 7-Color-Planar-Graph which finds a 7-coloring of a planar

graph in O(lg n) time. The algorithm is shown in Figure 3. The first stage of the algorithm

partitions the nodes of the graph into sets 14, such that the degree of any node v F Vi

in G[V + Vi+1 + Vi+2,...] is at most 6 (Vi consists of all nodes of degree at most 6 in

G[V - (Vo U V U ... U V,-,)]). Then, the algorithm colors all the subgraphs induced by the

node-sets {Vi}. These graphs are node-disjoint and therefore the coloring can be done in

parallel. The last stage of the algorithm adds the subgraphs back in reverse order, updating

he ,olring.

Theorem 5 The algorithm 7-Color- Planar-Graph constructs a valid 7-coloring using n pro-

csssors and O(lgn) time on a CRCW PRAM.

Proof: By Euler's formula, at least a constant, fraction of any planar gral)h's nodes are of

degree 6 or less. Therefore, the first stage partitions the nodes of G into at most O(lg n)

sets Vi. We use concurrent reads and writes to determine whether the degree of a node

is a.t most 6, and hence each iteration of the first stage is done in constant time. By

Theorem 3, the second stage uses only O(lg*n) time. In the i tll iteration of the third stage,

the graph G[Vi] is already 7-colored and the maximini degree of each node in Vi in the graph

12



Procedure 7- Color-Planar-Graph

VI, V2,... VSPa,,l -- 0;

i +- 0;

while V' ? 0 for all v E V' do in parallel ((first stage))

if Degree(v) < 6
then begin

V, -V, + V;
Vt 4 V, - V

end;
i4- i +1;

end;
k 4-i - 1;
for all 0 < i < k do in parallel (( color the pseudoforests))

E- {v,w } I v, V ; {v,w } E E};

Ci 4- Color-Constant-Degree- Graph(V , E1);

end;
for i +- k down to 0 do (( second stage )) .

for j 4- 0 to 6 do
for all v E V" do in parallel

ifC, = j
then begin

C - max{0,...,6} - {C, I w E V'; {v,w} E E} 1;
V" ~V"- V
V' 4-- V' + v;

end;
end;

end; -

end;
end.

Figure 3: The 7-Coloring Algorithm For Planar Graphs

13



G[Vi + V+1 + Vi+2 + ... ] is at most 6. Only constant time is then needed to add in Vi and

produce a valid 7-coloring of G[Vi + V+j + V+2 + ... ]. Therefore, only O(lg n) time is used

in all three stages. I

Remark: If at the first stage, instead of removing from the graph all the nodes with degree of

at most 6, we remove all nodes with degree of at most c times average degree (for c > 1), the

algorithm described above runs in polylogarithmic time for any graph G such that the average

degree of any node-induced subgraph G' of G is polylogarithmic in the size of G'. This class

contains many important subclasses including graphs that are unions of a polylogarithmic

number of planar graphs (i.e. graphs with polylogarithmic thickness [Har72]).

Given a valid 7-coloring of a planar graph, we can find an MIS in the graph by iterating

through colors as in our Constant-Degree-MIS algorithm. With concurrent reads and writes,

only constant time is needed for each color class. Hence, we can find an MIS in a planar

graph in 0(lg n) time on a CRCW PRAM using a linear number of processors.

The deterministic parallel algorithms for 5-coloring planar graphs, described in [BK87]

and in [Nao86], use Q(lg3 n) time and 0(n ) processors. These algorithms require a large

number of processors because they use Luby's MIS algorithm [Lub86]. Using the Constant-

Degree-MIS algorithm described in the previous section, we can reduce the number of pro-

cessors to linear, while increasing the running time by a factor of O(lg*n) (GP87a, Gol87j.

The 5-coloring algorithm presented below is essentially a parallelization of the sequential

algorithms in [CNS81, MST80]. Given an embedding (which can be computed in 0(lg2 n)

time [KR86]), our algorithm runs in O(lgnlg*n) time on a CRCW PRAM using a linear

number of processors. Given a graph G = (V, E), the algorithm finds a special large inde-

pendent set I of nodes in G, merges some of the neighbors of I (as described below) and

removes the nodes in I to create a new graph G', recursively colors G', and uses this coloring

to color the nodes in G.

The special independent set I is constructed as follows. Let Q be the set of all nodes in

G of degree greater than 42. Let /4 be the set of all nodes of degree 4 or less. Let V and V

be the set of all nodes of degree 5 with at most one neighbor in Q and the set of all nodes

of degree 6 with no neighbors in Q, respectively. Let S = V4 U V5 U V6. Let G (S, ES) be

14



the graph induced by the nodes in S in the graph which is the square of G[V - Q] The set

I is a maximal independent set in the graph G' U G[V - Q]. Since G5 and G[V - Q] are of

constant degree, we can find I using the procedure Constant-Degree-MIS.

In order to construct the graph G', the algorithm proceeds as follows. Start with G' = G.

For each node in In v5 we find two of its non-adjacent neighbors that have low degree (42 or

less), and merge them into a single supernode. For each node in I n V we either merge three 0
of its non-adjacent neighbors into a single supernode, or merge two non-adjacent pairs of its

neighbors into two supernodes. The embedding information is used as in [CNSS1, MSTS0]

to find the neighbors that can be merged while preserving planarity after all nodes in I are S

removed. Then we remove all the nodes in I to get the graph G'.

After recursively 5-coloring the graph G', we obtain the coloring of G as follows. First we

color all the nodes of G that correspond to nodes or supernodes of G' with the same color

they were colored in G'. Now we add all the nodes in I and in parallel color every one of -

them with a color different from the colors of its neighbors.

In order to bound the running time of the 5-coloring algorithm we need the following

lemma, which is similar to Lemma 3 in [CNS81].

Lemma 6 The size of S = V4 U V U V,3 is at least a constant fraction of the total number of

nodes in the graph.

Proof: Let R = V - S. Denote by si and ri the number of nodes of degree i in the sets S

and R, respectively. Let r. = ri, and let rQ = 4 ri. By Euler's formula, rQ K -n.

We prove the lemma by a counting argument. Definitions of rs and r 6 imply that 2r 5 +r 6 K

]=43 iri. Euler's formula implies that 3n > r, therefore

6 42 00

6n > Eisi + + 6r6+ Eir, + 2 ir,
i=i=7 i=43

6 42

_ isi + 7rs + 7r 6 + iri
i~i=7



42
> 7r 5 +7r 6 +7Eri

i=7

6 6

> 7(Zs+ +r+r6  r.+rQ) -7Zs - 7rQ
i=1 i=1

> 7n-71S I -7. ¥6n

Thus ISI _ .o

Theorem 7 Given an embedded planar graph, the algorithm 5-Color-Planar-Graph 5-colors

it using n processors in O(lg*n Ig n) time on a CRCW PRAM, and O((lg*n + Ig A) Ig n) time

on an EREW PRAM.

Proof: Correctness of the algorithm follows from [CNS81] and from the fact that the nodes

in I are independent in G' U G[V - Q]

Lemma 6 implies that the size of S is fl(n). The graph G8 has a constant maximum

degree and hence the size of the set I is £t(n) as well. Therefore the depth of recursion is at

most O(lgn).

On a CRCW PRAM, we can find S and Q in constant time as in the algorithm 7-Color-

Planar-Graph. The construction of G' U G takes constant time because G3 has constant

degree. The algorithm Constant-Degree-MIS finds I in O(lg*n) time. In constant time

nodes in I can merge appropriate neighbors and delete themselves from G to form G'. Edge

lists in G' need not be compacted when we are using the CRCW PRAM. After recursively

coloring G', we can color G in constant time.

On the EREW PRAM, O(lg A) additional time per recursion level is needed since we

must compact edge lists of G' (so that the set S in G' can be found in constant time). I

Remark: Chrobak, Diks, and Hagerup [CD1187] have recently improved the result of Theo-

rem 7 by giving an algorithm for 5-coloring planar graphs that runs in O(lg*n Ig n) time on

an EREW PRAM and does not need an embedding.
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Using the techniques described in this section, it is easy to construct a fast algorithm for W

finding a maximal matching (MM) in a planar (or a constant-degree) graph. As in the 7-

coloring algorithm, the first stage of the MM algorithm separates the nodes of the graph into

sets V, such that the degree of any node v E V in G[V + Vi+i + V1+2,. is at most 6. Then

the graphs {G[V]} are colored in parallel. The second stage of the algorithm recursively

finds MM in the graph G[V - V] and removes the matched nodes to get G[V'], where V'

is the set of the unmatched nodes. The graph G[V'] has no edges and the nodes V in the

graph G[V' + V1] have maximum degree of 6. Hence, in 7 iterations over the colors of G(II]

we can find the MM of G.

Theorem 8 A maximal matching in a planar graph can be found in O(lgn) time on c

CRCW PRAM using a linear number of processors.

Remark: Using Euler's formula, we can extend our algorithms for 7-coloring and MIS in

planar graphs to graphs of boundedgenus 7. We apply the algorithm 7-Color-Planar-Graph

as before when there are at least c7y nodes remaining in the residual graph, for some constant

c. The Heawood map-coloring theorem states that any graph can be colored with O(Vf/)

colors, and its proof implies a polynomial time algorithm for finding such a coloring [Har72].

Therefore, when less than c- nodes remain in the residual graph, we sequentially color it

with O(vJ-y) colors. With additional time that is polynomial in y, we can then O(,/-j)-color

the graph using the same time and number of processors as for 7-coloring a planar graph.

Note, that the above algorithm does not need embedding. The related result for MIS on

bounded-genus graphs follows as before.

6 Lower Bounds

In this section we prove two lower bounds for a CRCW PRAM with a polynomial number

of processors:

" Finding a maximal independent set in a general gra)h takes P(lg n/lg]g n) tiMe.

" 2-coloring a directed list takes Ql(lg n/lglg n) time.
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The first lower bound complements the O(lg n) CRCW PRAM upper bountid for the MIS

problem that is achieved by Luby's algorithm [Lub86]. The second lower bound complements

Theorem 2 in this paper.

Theorem 9 The running time of any MIS algorithm on a CRCW PRAM with a polynomial

number of processors is f(lg n/lglg n).

Proof: Given an instance of MAJORITY, we construct an instance of MIS in constant

CRCW PRAM time. MAJORITY is harder that PARITY [FSSS1], which was proven to

take 2(lg n/ lglg n) time on a CRCW PRAM in [Bea86, BH87]. Therefore the lower bound 6

claimed in the theorem follows.

Let x 1 ,x 2,. . . ,x,. be an instance of MAJORITY. We construct a complete bipartite

graph G = (V, E) with nodes corresponding to '0' bits of the input on one side and nodes

corresponding to '1' bits on the other side.

V = {,. n
E = {(i,j)Ix1  x j }

To construct this graph, assign a processor Pij for each pair 1 < i < j < n. Then, each

processor Pij writes 1 into location Mij if xi : xj and writes 0 otherwise.

A maximal matching in a complete bipartite graph is also a maximum one. By construct-

ing a maximal independent set in the line-graph G' of G, one can find a maximal matching

in G. To construct the graph G' assign a processor Pijk for each distinct i, j, k < n. Each

Pjk writes 1 into location M(i,i),(i,k) if Mii = Mjk = 1 and 0 otherwise.

The MAJORITY equals to 1 if and only if there is an unmatched node i E G such that

x, = 1, which can be checked on a CRCW PRAM in constant time. Ik

Theorem 10 The time to 2-color a directed list on a CRCW PRAM with a polynomial

number of processors is f2(lg n/lglg n).

Proof: We show a constant time reduction from PARITY to the 2-coloring of a directed list.

First, we show how to construct, in constant time, a directed list with elements corresponding

18



to all the input bits xi with value of 1. Let x1 ,x 2,... ,x,, be an instance of PARITY. We

can assume w.l.o.g. that x, = 1. With each input cell Mi (that initially holds the value of

xi), associate a processor P, a set of processors pijk with each index i, 1 < k < j < i, a set

of cells M', 0 < j < i, and a cell M . Initialize all cells that do not store input bits to 0.

In one step, each processor Pj reads the value of Mi-k and, if it equals to 1, writes 1

into M', effectively computing the OR-function on the input values xi_j,xi_j+l,... ,xi-.

Assign a processor P/ to each M, 1 < j < i. Each processor Pij reads M/ and M, +1 and

writes (i - j) into M' if and only if Mj $ Ms'. It can be seen that for all 1 < i < n, Mil

holds max{j I j < i,x - 1}.

We have constructed a directed list with elements corresponding to all the input bits x,
with value of 1. Assume this list is 2-colored. Then PARITY equals to I if and only if both
ends of the list are colored with the same color, which can be checked in constant time. I

7 Conclusion and Open Problems

We have presented a fast technique for breaking symmetry in parallel and have shown how
to apply this technique to improve the running times and processor bounds of a number of
important parallel algorithms. We believe that the efficiency of this technique, combined
with the simplicity of its implementation, makes it an important tool in designing parallel

algorithms.

Our results motivate the following open questions.

" We have proved a lower bound for MIS in general graphs. What is the lower bound

for MIS in planar graphs ?

* Beame has proposed the following algorithm for coloring rooted trees of constant degree
on PRAM. Run the algorithm 3- Colo r-Rooted-Tree for O(lglgn) steps. Next, each

processor collects the colors of all the descendants on distance O(lg'n) or less and uses

this information and a precomputed lookup table (of size O(lg'n lg lg'n)) to compute
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its final color. Given an fl(lg*n) preprocessing time, we can )recolfpl)lte the lookup

table; after this preprocessing step, the time to 3-color a tree (or a pseudoforest) p
will be O(lglg*n). Is it possible to 3-color a tree in o(lg*n) time on PRAM with no

preprocessing?

" Can we compute an MIS in general graphs in o(lgn) time ?

" Recently, several papers [CV86, Rei85] that present parallel algorithms with "optimal

speedup" have been published. (The measure of optimality used in these papers is how

close is the processor-time product of the parallel algorithm to the running time of the

fastest known sequential one.) The problems we have been studying in this paper can

be solved in linear sequential time, but the processor-time products achieved by our

algorithms are superlinear (by a lg*n or a polylogarithmic factor). How can one reduce

the processor requirements of the algorithms without increasing their running time

in order to achieve linear time-processor products? Also, will this improved processor

efficiency induce significantly more constraints on the model as compared to our current

algorithms ?
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